Ex. 9 Graph the trig. function and find the amplitude, the period, and the end points of the phase shift.
suggested
order for
graphing
reflection
Amp
Period
Phase Shift
Vertical shift
a)

$y=3 \sin (2 x-\pi)$
Amp: $|3| \quad$ Pr e $=\frac{2 \pi}{6}$ $=3$

$\frac{\pi}{4} \rightarrow \frac{1 \pi}{4}$
$\left[0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{\pi}{\pi}\right]$

Ps to the right

$$
\begin{array}{ll}
\text { PS } \\
\text { bx -c=0 } & \text { bx-c=2 } \\
2 x-\pi=0 & 2 x-\pi=2 \pi \\
x=\frac{\pi}{2} & x=\frac{3 \pi}{2} \\
\text { Left } & \text { Rte }
\end{array}
$$

$$
y=3 \sin x
$$

b) $y=-2 \cos (1 / 2 x+\pi)-2$ Psis left
b) $y=-2 \cos (1 / 2 x+\pi)-2$

Reflection, Amp $=|-2|$, Per: $\frac{2 \pi}{6}$, PS

$$
\begin{aligned}
& \text { Reflection , } A_{m p}=|-2|, \quad \text { Pr: } \frac{2 \pi}{6} \\
& \text { Vas. }=\downarrow 2 \\
& =\frac{2 \pi}{y_{2}} \\
& b_{x}-c=0 \\
& b x-c=2 \pi \\
& \frac{1}{2} x+\pi=0 \\
& \frac{1}{2} x+\pi=2 \pi \\
& =4 \pi \\
& \frac{1}{2} x=-\pi \\
& \frac{1}{2} x=\pi \\
& {[0, \pi, 2 \pi, 3 \pi, 4 \pi]} \\
& x=-2 \pi \\
& x=2 \pi \\
& \text { Rt EP }
\end{aligned}
$$

Ex. 10 Write the function given the following information:
a) $A_{m p}=4$
$A_{m p}=|4|$
$a= \pm 4$
could be
be either

$$
\begin{array}{rlr}
\text { Par }=\frac{2 \pi}{3} & \text { p.s. }=\frac{\pi}{\text { right }} \\
\text { Par }=\frac{2 \pi}{b} & \rho s=-\frac{c}{b} \\
\frac{2 \pi}{3}=\frac{2 \pi}{b} & \pi=-\frac{c}{3} \\
2 \pi b & =6 \pi & c=-3 \pi \\
b & =3 &
\end{array}
$$

$$
y= \pm 4 \cos (3 x-3 \pi)
$$

b) $\begin{aligned} & A_{m p}=1 / 7 \\ & A_{m p}=\mid a l\end{aligned} \quad p e r=\frac{3 \pi}{4} \quad p_{s}=-\frac{3 \pi}{4} \quad$ uss. $=+4 \quad$ funct: \sin
$A_{\text {mp }}=|a|$
Amp $=|1 / 7|$
$a= \pm \frac{1}{7}$
$p e r=\frac{2 \pi}{6}$
$\frac{3 \pi}{4}=\frac{2 \pi}{6}$
$3 \pi b=8 \pi$
$b=\frac{8}{3}$

$$
y= \pm \frac{1}{7} \sin \left(\frac{8}{3} x+2 \pi\right)+4
$$

$$
\begin{aligned}
& P_{S}=\frac{-c}{6} \\
& -\frac{3 \pi}{4}=\frac{-c}{2 / 3} \\
& -\frac{3 \pi}{4}=-\frac{3 c}{8} \\
& c=-\frac{3 \pi}{4} \cdot\left(\frac{8}{-3}\right)
\end{aligned}
$$

$$
c=2 \pi
$$

\cos function

$$
y=a \cos (b x \pm c) \pm d
$$

Amp $\left.=\frac{1}{2} \right\rvert\,$ max $-\min \mid$ $=\frac{1}{2}|>-0|$
Amp $=3.5$
Period $=\frac{2 \pi}{b}$
$y=3.5 \cos \left(y_{3} x\right)$ Not final answer!

$$
\begin{aligned}
& 6 \pi=\frac{2 \pi}{b} \\
& b=\frac{1}{3}
\end{aligned}
$$

$$
y=3.5 \cos (y 3 x)+3.5
$$

Frequency
It is the number of cycles a trig function completers in a given inter val.

$-2 \pi \leq x \leq 2 \pi$

It is the reciprocal of the period.
Graphing on a $T_{i}-84$
When graphing on the calculator:
(1) Radian Mode
(2) 200 m 7 (trig) makes the x-axis into radians
(3) Change table interval to $\pi / 2$ or π

$$
\Delta T b 1=\pi / 2 \text { or } \pi \text { or } \pi / 4
$$

