4.5 Graphs of Since and Cosine

Trig functions are Periodic Function, this means there is a basic shape that repeats itself after a fixed Period of time.

Sine Function

$$
y=\sin x
$$

Cosine Function

Sin and cos functions share many similar key items:

Period of a trig function is the distance from $x=0$ it takes to
graph the" basic shape (no repeat).
Domain of a trig function is the \mathcal{C} measure of θ.
Range of a trig function is the value of the trig function at a certain $\&$ measure.
ex: $\quad \sin 30^{\circ}=1 / 2$
Domain 30
Range 1/2
$\sin \frac{\pi}{6}=\frac{1}{2}$
Domain $\pi / 6$
Range $1 / 2$

Since trig functions are periodic, you can use the period to find an equivalent $\&$ measure on the unit circle.

$$
\begin{array}{rr}
\sin \theta=\sin (\theta \pm 360 n) & \cos \theta=\cos (\theta \pm 360 n) \\
(\theta \pm 2 \pi n) & \left(\theta \pm 2 \pi_{n}\right)
\end{array}
$$

Ex. 1 Use the period of the trig g function to change 4 measure to an equivalent $\&$ measure on the unit circle.
a) $\operatorname{Sin} 510^{\circ}$
b) $\cos \frac{15 \pi}{4}$
$\left(\frac{15}{4}-\frac{8}{4}\right) \stackrel{\sqrt{2} / 2}{N-\sqrt{2} / 2}$

$$
\sin \left(150^{\circ}\right)=\frac{1}{2}
$$

$$
\begin{gathered}
\cos \left(\frac{15 \pi-2 \pi}{4}\right)= \\
\cos \left(\frac{7 \pi}{4}\right)=\frac{\sqrt{2}}{2}
\end{gathered}
$$

$\longrightarrow+{ }^{+b}$ maces left -b moses right
*Recall *

Since
Cosine
$s \longrightarrow y=\cos x$

$$
y= \pm a \cos (b x \pm c) \pm d
$$

Transformations of Sine and Cosine Graphs
Vertical Transformations " $\pm d$ " moves the graph up $+d$, moves the graph down $-d$

Ex. 2 Describe the transformation
a) $y=\sin (x)+5$
shifts S units up, all points
b) $y=\cos (x)-2$
shifts 2 units
down, all points

Reflection over the x-axis $a<0$

$$
y=-a \sin (b x \pm c) \pm d \quad y=-a \cos (b x \pm c) \pm d
$$

Ex. 3 Graph the function.

* Alleys graph the parent graph first! Label all points on the final graph!
a) $y=-\sin (x)-2 ; 0 \leq x \leq 2 \pi$

$$
y=-\sin (x)-2
$$

b) $y=-\cos (x)-2 ; 0 \leq x \leq 2 \pi$

$$
\ldots
$$

c) $y=\frac{1}{2} \sin x ; 0 \leq x \leq 2 \pi$ * multiply all y-valocs by $1 / 2$!

y-values

$(0,0)$	$0 \cdot 1 / 2=0$
$(\pi / 2)$	$1 \cdot 1 / 2=1 / 2$
$(\pi, 0)$	$0.1 / 2=0$
$(3 \pi / 2,-1)$	$-1 \cdot 1 / 2=-1 / 2$
$(2 \pi, 0)$	$0.1 / 2=0$

d) $y=2 \cos x ; \quad 0 \leqslant x \leqslant 2 \pi$

Amplitude (It is the height of the wave)
Represents half the distance between the maximum and minimum values of the function.

Given $y=a \sin (b x \pm c) \pm d$, then the
Amplitude $=|a|$
a acts as a scaling factor, it causes vertical
stretch $(a>1)$ and vertical compression ($0<a<1$)
Amp $=\frac{1}{2}|\max -\min | \leftarrow$ Use when a graph is given.

* Changing " a " results in a different range!

Ex.y Graph all functions on the same graph. List domain and range for each.

$$
0 \leq x \leq 2 \pi
$$

a) $y=\sin x$
b) $y=\frac{1}{2} \sin x$
c) $y=2 \sin x$

Ex. 5 State the amplitude of each function.
a) $y=5 \sin x$

$$
\begin{aligned}
A_{m p} & =|5| \\
& =5
\end{aligned}
$$

c)

c)

$$
=\frac{1}{2}|8|
$$

$$
=4
$$

b)

$$
\begin{aligned}
y & =-3 \cos x \\
A_{\text {mp }} & =|-3| \\
& =3
\end{aligned}
$$

d)

Period of Sine and cosine Functions

Let b be a positive real $\#$, then the period of $y=a \sin (b x)$ and $y=a \cos (b x)$ is given by

$$
\begin{aligned}
& \text { Period }=\frac{2 \pi}{b} \\
& y=\sin x \\
& b=1 \quad \text { per }=\frac{2 \pi}{1}=2 \pi
\end{aligned}
$$

* Horizontal stretch and compression comes from changing the period!
$b>1$ horizontal compression
$a<b<1$ horizontal stretch
Ex. 6 Find the period for each function and state if it is horizontal compression or stretch.
a)

$$
\begin{aligned}
y & =\cos x \\
\text { per } & =\frac{2 \pi}{b} \\
& =\frac{2 \pi}{1} \\
& =2 \pi
\end{aligned}
$$

b)

$$
\begin{aligned}
y & =\sin 4 x \\
p e r & =\frac{2 \pi}{4} ; b=4 \\
& =\frac{2 \pi}{4} \\
& =\frac{\pi}{2}
\end{aligned}
$$

horizontal Compression

Ex. 7 Graph the function
a) $y=\cos (x / 2)$
$b=\frac{1}{2}$; horizontal stretch

$$
\text { per }=\frac{2 \pi}{y_{2}} \rightarrow 2 \pi \cdot \frac{2}{1}=4 \pi
$$

$\frac{4 \pi}{4}=\pi$ Period

$$
[0, \pi, 2 \pi, 3 \pi, 4 \pi]
$$

D) $y=\sin 2 x$
b. 2 , horizontal compression

$$
\begin{aligned}
\text { period } & =\frac{2 \pi}{2} \\
& =\pi \\
\frac{\pi}{4} & =\left[0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi\right]
\end{aligned}
$$

$$
\frac{\pi}{4}=\left[0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi\right]
$$

c) $y=3 \sin (2 x) \quad 0 \leq x \leq 2 \pi$

