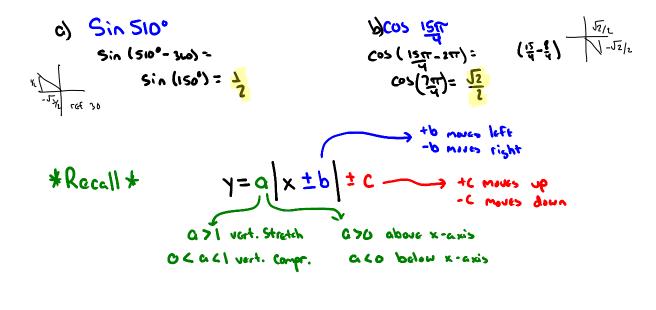

4.5 Graphs of Sing and Cosine Wednesday, March 25, 2015

12:30 PM

Trig Functions are <u>Pariodic Functions</u>, this means there is a basic shape that repeats itself after a fixed <u>Pariod</u> of time.

Sin and c	tos functions share many similar f(x): sin(x)	Key items. fus: cos (x)
Domain Range Paried	R - Ι≤ γ ≤ Ι [0, 2π]	R -1 (y () [0, 277]
Key Points	(0,0) (T/2,1) (T,0) (ST,-1) (2T,0) Inter. Max Inter Min Inter. Quarter Half Three Queter Full Period Pariod Period Period	$(0,1)$ $(\pi_{1,2}0)$ $(\pi_{1,-1})$ $(3\pi_{1,0})$ $(2\pi,1)$ Max Inter Min Inter Max
Symmetry Even lodd	Origin Odd	y-axis even

Pariod of a trig function is the distance from X=0 it takes to graph the basic shape (no repeat).


Domain of a trig function is the & measure of O. Range of a trig function is the value of the trig function at a certain & measure.

GX1	Sin 30°=	V2 Sin <u>Y</u>	Sin <u>H</u> = 12	
	Domain 30	. Domain	₩.	
	Ronge 42	. Range	Y2	

Since trig functions are periodic, you can use the period to find an aquivalent & measure on the unit circle.

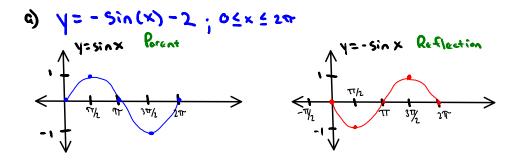
> $Sin \Theta = Sin (\Theta \pm 3 \iotaon)$ $(\Theta \pm 2 \pi n)$ $(\Theta \pm 2 \pi n)$ $(\Theta \pm 2 \pi n)$

<u>Ex. 1</u> Use the period of the trig function to Change & measure to an equivalent & measure on the unit circle.

Sine Cosine y= sin x - Parent Graphs -> y= cos x

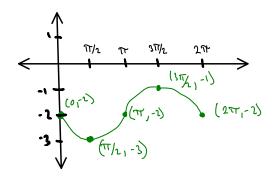
y = tasin(bx tc)td

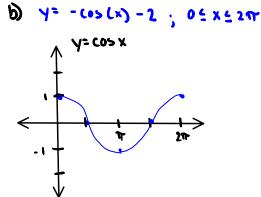
3rd Pd PreCal Hnrs S15 Page 2

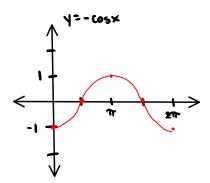


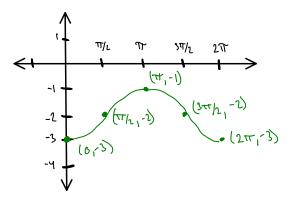
Transformations of Sine and Cosine Graphs

Vartical Transformations "+d" moves the graph up +d, moves the graph down -d

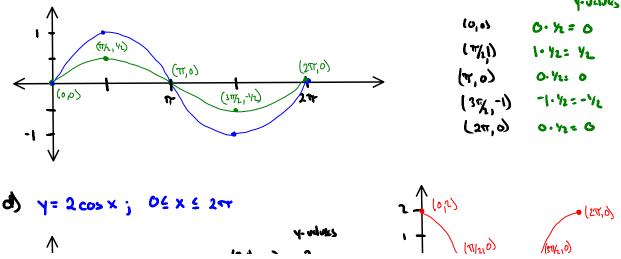

<u>Ex.2</u>Describe the transformationC) y = sin(x) + 5b) y = cos(x) - 2Shifts 5 units up,Shifts 2 unitsGll pointsdown, all points

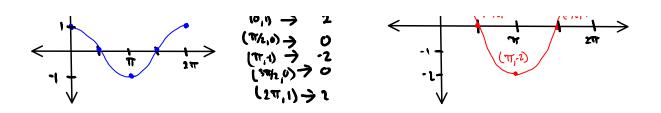

<u>Ex.3</u> Graph the function. * Always graph the parent graph first! Label all points on the Final graph!




$$y = -\sin(x) - 2$$

A A





* multiply all y-values by 42!

Y-values

Amplitude (It is the height of the Wave) Represents half the distance between the maximum and Minimum values of the function.