
4.2 Unit Circle

Wednesday, March 11, 2015 10:23 AM

When a circle has a radius of 1 and the conter is at the origin (0,0), it is called a Unit Circle.

* Always bring a VERTICAL line down or up to the X-axis to form Rt B. *

Six Trig Functions and the Unit Circle ; where r=1

Function	Unit circle Relation
Sine	$\sin = \frac{y}{1} + \frac{y}{r}$
Cosine	$\cos: \frac{x}{1} \frac{x}{r} \leftarrow \bigcirc (0) x \rightarrow (0) (0) x \rightarrow (0) ($
Tangent	$tcn = \frac{Y}{X} = \frac{sie\theta}{cos\theta} (-x_{1}-y)$
Cusecant	$csc = \frac{1}{Y} = \frac{c}{\frac{1}{Y}} = \frac{L}{sin\theta}$
Sucant	Sec: $\frac{1}{x} = \frac{1}{x} = \frac{1}{x}$
Cotonsont	$\cot = \frac{X}{Y}$ $\cos \theta$

Notice that the y-coord is $\sin \Theta$ and the x-coord is $\cos \Theta$; only on the unit circle. $(x,y) \rightarrow (\cos \Theta, \sin \Theta)$

Review Special Right Triangles

Cos Θ ; only on the unit circle $(x, y) \rightarrow (\cos \Theta, \sin \Theta)$

Review Special Right Triangles

$$\Theta = 30^{\circ} \text{ or } \frac{1}{1}$$

$$0 = 1$$

$$0 = 60^{\circ} \text{ or } \frac{1}{3}$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

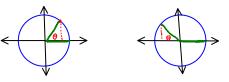
$$0 = 1$$

$$0 = 1$$

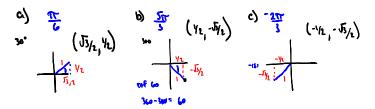
$$0 = 1$$

$$0$$

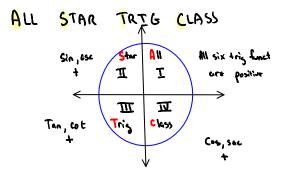
 $\Theta = 45^{\circ}$ or Π J_{1} for 45°, hypotenuse is I sociales $J_{2} \cdot J_{2}$ short side.

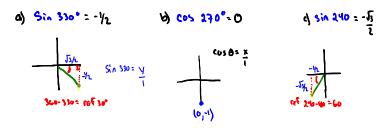

Spacial Right DS on the Unit Circle (Reference trimsles)

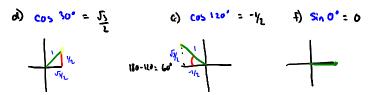
Study Filled aut Unit Circle


When X=0 tangent and secont functions are undefined. Happans at 90° or $\frac{TT}{2}$ and 270° or $\frac{3}{2}$

When y=0 cotangent and cosecant functions are undefined. Happens at 0° or 0 red, 180° or Tr, 300° or 2m


Reference Angle is an acute onder formed by the terminal side and x-axis


Ex. 1. What ordered pair on the Unit O corresponds to the following angle.



1 7 ۱

Ex. 2 Give exact values

9) $\cos 300^{\circ} = y_1$ h) $\sin -110^{\circ} = -\sqrt{3}y_1$ i) $\cos -60^{\circ} = y_1$ - VL 1 5/L - 5/L -180 - (-16) = - 6 105.60

Ex. 3 What quadrant does O lie?

a) Sin $\theta < 0$, cos $\theta > 0$ b) $\tan \theta < 0$, cos $\theta < 0$

C) CSCO 70, SECO70 & SECOCO, SinOLO XX I

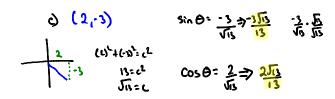
```
× ×
      111
```

3rd Pd PreCal Hnrs S15 Page 3

e) cot070, sin0<0

Ex. 4 Evaluate for each of the six trig. functions

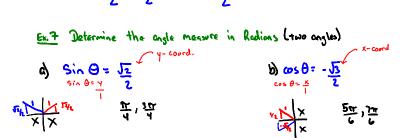
a) <u>0=0</u>° CSC 0 = undefined Sec 0 = 1 cot 0= undefined L to to Reciprocals of the first 3! b) $\Theta = 45^{\circ}$ $s_{in} 45^{\circ} = \sqrt{1}$ $\cos 45^{\circ} = \sqrt{2}$ $\tan 45^{\circ} = 1$ $\frac{1}{\sqrt{1}} \sqrt{1}\sqrt{2}$ $\left(\sqrt{12} \sqrt{2} \sqrt{2}\right)$ 5-2-54-CSC45° = J2 Sec45° = J2 cot45°= 1 $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ $\theta = \frac{3\pi}{2}$ ST. 18: 290 $\frac{1}{2} = \frac{1}{2} = \frac{1}$ (0,1) () $\theta = 3\pi \frac{1}{4}$ ($-\frac{51}{2}, \frac{12}{2}, \frac{12}{2}, \frac{1}{2}, \frac{$


3rd Pd PreCal Hnrs S15 Page 4

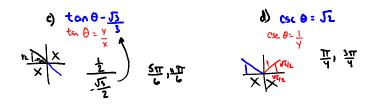
$$f) = 675^{\circ} + 516 + 675^{\circ} = -\frac{51}{2} + 516 + 516^{\circ} = -1$$

$$\frac{675}{-22} + \frac{516}{2} + \frac{516}{2}$$

<u>Ex.s</u> A point on the terminal side of an angle O is given. Find the <u>exact</u> values of sin O and cos O.


a)
$$(-3, 4)$$

 $4 + \frac{2}{-3}$
 $(-3)^{n} + (4)^{n} : c^{2}$
 $25 : c^{2}$
 $c : 5$
b) $(5, 12)$
b) $(5, 12)$
b) $(5, 12)$
b) $(5, 12)$
 $(5)^{n} + (4)^{n} : c^{1}$
 $(5)^{n} : c^{1}$
 $(5)^{n} : c^{1}$
 $(5)^{n} : c^{1} : c^{1} : c^{1} : c^{1}$
 $(5)^{n} : c^{1} : c^$



Ex. 6 Determine the exact value.

a)
$$Sin (-150^{\circ}) \cdot Sac 60^{\circ}$$

 $\frac{-F_{V_{1}}}{Y_{1}} = \frac{-1}{2} \cdot 2 = \frac{-1}{1} + \frac{1}{Y_{1}} = 2$

b)
$$\cos \frac{y_{1}}{y_{1}} - \tan \frac{2w_{1}}{3}$$

 $\frac{\sqrt{5}}{\sqrt{5}} + \frac{\sqrt{5}}{2} - \frac{\sqrt{5}}{2} + \frac{\sqrt{5}}{2}$

Domain of Sine and Cosine functions is the set of all
real His.
$$f(\theta) = \sin \theta$$

leage: $-1 \leq \sin \theta \leq 1$
 $-1 \leq \cos \theta \leq 1$
It Domain is the *A* measure of $\Theta : 30^\circ$, $\frac{11}{5}$, -130° , .78 reds
Range is the value of the trig, function at a certain
A measure: $\frac{1}{2}$, $\frac{\sqrt{32}}{2}$, 1 , 0
A function is Abriedic (repeats) if there axies a positive
real HC such that $f(\theta+c) = f(\theta)$ for all Θ in the
domain of F .
Sine and Cosine have a period of 2TV or 340°
Sin $\Theta = Sin(\Theta \pm 3400)$ Cos $\Theta = cos(\Theta \pm 3600)$
n:th of pariods $2TVn$
 $\frac{Cx.8}{4}$ Use the period to change the X measure to an
equivalent $\frac{1}{4}$ measure on the unit circle.
C) Sin 510°
 $\sin 150^\circ$
 $\sin 50^\circ$
 $\sin 50^\circ$

Ex.9 Find the exact value of either $\sin \theta$ or $\cos \theta$. (looking for the tright for the tright $\sin \theta = \frac{12}{13}$, $90^{\circ} < \theta < 130^{\circ}$ sin $\theta = \frac{12}{13}$, $90^{\circ} < \theta < 130^{\circ}$ so $\theta = -\frac{5}{13}$ $a^{\circ} + 1412 \cdot 103^{\circ}$ $a^{\circ} + 25$ $a^{\circ} = -\frac{12}{13}$

Actually negative blc

b)
$$\cos\theta = -\frac{4}{5}$$
 $\Pi \leq \theta \leq 3\Pi$
 Π_{1}
 $\chi \times 0$ $(41^{6}+b^{2}:(51^{6})$
 $5\pi/2$ $b^{2}:9$ $b^{2}:3$
Evaluate Tric functions using a TI-83t or TI-84

(MODE) I Redin Degree

Calculator does not have reciprocal functions as Keys.

Ex. S. Evaluate using a calculator. (4 decimal places)

$$\frac{1}{4} = \frac{1}{4} = \frac{1}$$

•