
4.2 Unit Circle

Wednesday, March 11, 2015 10:23 AM

When a circle has a radius of 1 and the center is at the origin 60,0), it is called a Unit Circle.

* Always bring a VERTICAL line down or up to the X-axis to form Rt D. *

Six Trig Functions and the Unit Circle juhere r=1

<u>Function</u>	Unit circle Rel	<u>etio</u> n	
Sine	$\sin = \frac{y}{1}$	i Ā	(24.4)
Cosine	Cos: X	<u>r</u>	< () () () () () () () () () (
Tangent	tan = Y	Sia () Cos ()	(-1,-4)

Secont Sec:
$$\frac{1}{x}$$
 $\frac{1}{x}$ $\frac{1}{x}$

Notice that the y-coord is $\sin \Theta$ and the x-coord is $\cos \Theta$; only on the unit circle. $(x,y) \to (\cos \Theta, \sin \Theta)$

Description of the second

 $Cos \theta$; only on the unit circle. $(x,y) \rightarrow (cos \theta, sin \theta)$

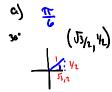
Review Special Right Triangles

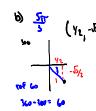
O= 45° or T JI/ For 45°, hypotenuse is I socal as 12 - short side.

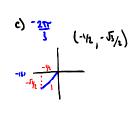
Special Right As on the unit Circle (Reformed trimples)

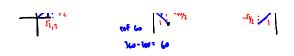
Study Filled out Unit Circle

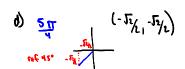
When X=0 tangent and secont functions are undefined. Happens at 90° or $\frac{T}{2}$ and 270° or $\frac{3}{2}$

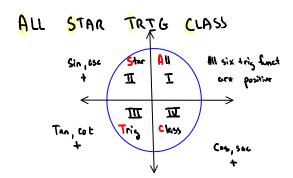

When you cotangent and cosecent functions are undefined. Hoppens at 00 or Orad, 1800 or 77, 3600 or 27

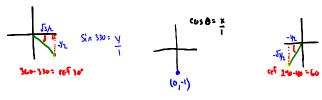

Reference Angle is an acute angle formed by the terminal side and x-axis

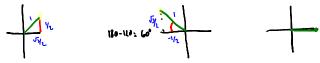


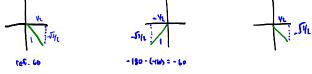



Ex. 1 What ordered pair on the Unit O corresponds to the following angle.








Ex. 2 Give exact values

Ex. 3 What quadrant does & lie?

Ex. 4 Evaluate for each of the six trig. functions

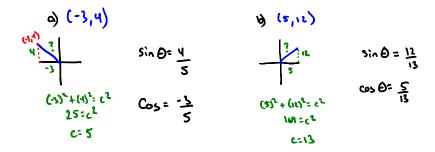
b)
$$\Theta = 45^{\circ}$$
 $5in 45^{\circ} = \sqrt{1}$
 $5in 45^{\circ}$

$$\frac{1}{\sqrt{3}} : \frac{2\sqrt{3}}{\sqrt{3}} \qquad \text{sw} \frac{\pi}{3} = 2 \qquad \text{cot} \frac{\pi}{3} : \frac{\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3}},$$

$$\frac{1}{\sqrt{3}} : \frac{1}{\sqrt{3}} : \frac{1}{\sqrt{3}}$$

$$\frac{\partial}{\partial x} = \frac{3\pi}{2}$$

$$\frac{\partial}{\partial x} = \frac{3\pi}{$$


$$CSC_{\frac{3}{4}} = \frac{1}{\sqrt{2}} \qquad CSC_{\frac{3}{4}} = \frac{1}{\sqrt{2}} \qquad CSC_{\frac{3}{4}}$$

$$f) = 675^{\circ} \qquad \text{sin GAS} = -\frac{7}{2} \qquad \text{cos GAS} = \frac{7}{2} \qquad \text{cot GAS} = -1$$

$$\frac{-\frac{7}{2}}{2} \qquad \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \qquad \text{cot GAS} = -1$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \qquad \text{cot GAS} = -1$$

Ex.5 A point on the terminal side of an angle 8 is given. Find the exact value of sin 8 and cos 8.

c)
$$(2;3)$$
 $5in \Theta^{2} - \frac{3}{3} \Rightarrow \frac{-3 \sqrt{13}}{\sqrt{13}} + \frac{2}{\sqrt{5}} \cdot \sqrt{5}$

$$\frac{2}{\sqrt{13}} + (4)^{2} + (-5)^{2} \cdot 2^{2}$$

$$\frac{2}{\sqrt{13}} + (4)^{2} + (-5)^{2} \cdot 2^{2}$$

$$\sqrt{13} + (-5)^{2} \cdot 2^$$

Ex. 6 Determine the exact value.

0)
$$Sin(-150^{\circ}) \cdot Suc 60^{\circ}$$

1 $\frac{-1}{y_1} \cdot 2 \cdot 2 = -1$

1 $\frac{-1}{y_2} \cdot 3y_2 = 2$

b)
$$\cos \frac{\pi}{4} - \tan \frac{2\pi}{3}$$

$$\frac{\sqrt{5}}{\sqrt{5}} - (-\sqrt{5})$$

$$\frac{\sqrt{5}}{2} + \sqrt{5}$$

$$\frac{\sqrt{5}}{2} + \sqrt{5}$$

$$\frac{\sqrt{5}}{2} + 2\sqrt{5}$$

$$\frac{\sqrt{5}}{2} + 2\sqrt{5}$$