3.4 Solving Exponential and Logarithmic Equations Friday, February 27, 2015

Two basic strategies for solving exponetial /logarithmic equations:

1) One-to-One floperty $a^x = a^y$ then x = y2) Inverse Property $\log_a a^x \to x$ $a^{\log_a x} \to x$

6.1 Solve

a)
$$3^{x} = 81$$

3×= 34

X=4

{43

 $(5^{-1})^{x} = 5^{3}$

x=-3

5-33

Inx = In7

X=7

273

1 4x = 35

log 4x = 10535

x 1054 = 10535

If you have a variable exponent but connet make like bases, take the log or In of both sides.

x 2.5 cyl { 2.5 cyl }

e) ex=15

Inex = In 15

x = 1/15

x = 2.7031

22.70813

 $f) \frac{2(3^{x})=58}{2}$

3 = 29

1033x = 10329

x log 3 = log 29

x 2 3.065

\$ 3.065 }

a) $3(4^{2m-5})-5=17$ $\frac{3(4^{2m-5})}{3}=\underline{22}$

109 42m-5 = 109 (23)

2m-5 = 10 ((22/3) 2m= 10g(22/3) +5

2~ = 6.4372

m= 3.2186

5221067

Factor, 2PP, take log or In

h)
$$\frac{3e^{2x}-5e^{x}-12=0}{3e^{x}-3e^{x}}$$
 $\frac{-3e^{x}-3e^{x}}{3\cdot -3e^{x}}$ $\frac{3e^{x}-3e^{x}}{3\cdot -3e^{x}}$ $\frac{3e^{x}-3e^{x}}$

£1.3963 3

\$ 2x-3ex+2 = 0

* Must Vyour solutions *

$$(e^{2x} - 2e^{x})(-e^{x} + 2) = 0$$
 $e^{x}(e^{x} - 2) - 1(e^{x} - 2) = 0$
 $(e^{x} - 1)(e^{x} - 2) = 0$
 $e^{x} - 1 = 0$
 $e^{x} - 2 = 0$
 $e^{x} = 1$
 $e^{x} = 2$
 $e^{x} = 1$
 e

Ex. 2 Solve

b)
$$\ln(2x-5) = \ln(2x+27)$$

 $2x-5 = 7x+27$
 $x=-6.4$
f) $\ln(x-2) + \ln(2x-3) = 2\ln(x)$
 $\ln(x-2)(2x-3) = \ln x^2$
 $2x^2-7x+6 = x^2$
 $x^2-7x+6 = 0$
(x-6)(x-1)=0
 $x-6=0$ x-1=0
 $x=6$ X=1 *Must Vyour solution(s).

e)
$$\log_{4}(6x-3) = \log_{4}(x+17)$$
 $6x\cdot3 = x+17$
 $5x=20$
 $x:4$
 $9) \log_{14} x = 2/3$
 $14^{2/3} = x$
 $x = 5.8088$
 5.8688

h)
$$\log_{8}(x^{2}-14) = \log_{8}(5x)$$

$$x^{2}-14 = 5x$$

$$x^{2}-5x-14 = 0$$

$$(x-7)(x+2) = 0$$

$$x-7 = 0 \quad x+2=0$$

$$x = 7 \quad x = 2$$

j)
$$\frac{2}{2} \log_5 3 \times \frac{4}{2}$$
 $\log_5 3 \times \frac{4}{2}$
 $S^2 = 3 \times 25 = 3 \times \times \frac{25}{3}$
 $\frac{2}{8} \cdot \frac{3}{3} \cdot \frac{3}{3}$

K)
$$6+21n \times = 9$$

$$2 \ln x = 3$$

$$\ln x = \frac{3}{2}$$

$$\log_e x = \frac{3}{2}$$

$$e^{\frac{3}{2}} = \times$$

$$x \approx 4.4317$$

$$\frac{3}{2}$$

Can solve logarithmic equations using a graphing utility.

Put left side in y,= and right side in y2= then use [2nd] frace 5: intersect.

Ex. 3 Solve using graphing utility

a)
$$\ln x = x^2 - 4x$$
 $Y_1 = \frac{1}{1}x$
 $Y_2 = x^2 - 4x$
 $\begin{cases} 3.3141 & 4.3383 \end{cases}$

b)
$$2 \log_5 3x = 4$$

 $y_1 = 2 \left(\frac{\log_5 3x}{\log_5} \right)$ of best formula.
 $y_2 = 4$

Ex.4

a) You have deposited \$750 into an account that pays 5.75% interest compounded continuously. How long will it take for my investment to double?

Approx. 12 years

$$A = Pe^{rt}$$
 $\frac{1560}{750} = \frac{750}{750}e^{.0575}t$
 $1 = e^{.0575}t$
 $1 = 1 - e^{.0575}t$
 $\frac{10.2}{.0575} = \frac{.0575}{.0575}t$
 $t = 12.0547$

From 1970 to 1997, the comsumer Price Index (CPI) value y for a fixed amount of sugar for year t can be modeled by the eqn:

y=-171.8 + 87.11nt

where y=10 represents 1970. During which year did the

price of sugar reach 4.5 times its 1970 price of \$28.80

on the CPI?

31.3

t: 31.8 yrs

21.8 yes + 1970 = 1991.8

.8 x12 = 9.6

1991, september 18th

.6 x 30