12.1 Intro to Limits

Tuesday, May 19, 2015 10:24 AM

* A fundamental concept of calculus is Limits.

Defn. of a Limit IF f(x) becomes arbitrarily close to an unique number N as x approaches c from either side. lim f(x) = N $x \rightarrow c$ The limit of f(x) as x approaches c equals N'.

As x gets close to C, but remains unequal to C, the corresponding value of f(x) gets closer to N.

0x:
$$f(x) = \frac{x^2 - 1}{x - 1}$$
 let x=1
 $f(x) = \frac{0}{0}$ undefined
So instead of x=1, use "as x approaches 1".
 $f(x) = \frac{x^2 - 1}{x - 1}$ x .25 .50 .75 .90 .99 .999 .9999
 $f(x) = \frac{x^2 - 1}{x - 1}$ x .25 .50 .75 .90 .99 .999 .9999

B/c we cannot use X=1 (its undefined) but it appears that f(x) is going to be 2.

$$\lim_{x \to 1} f(x) = 2 \text{ or } \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

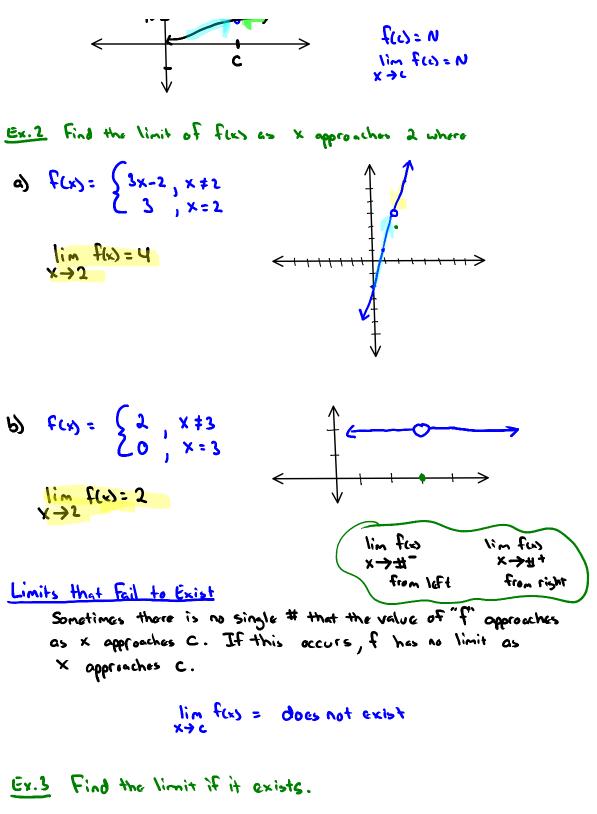
xys

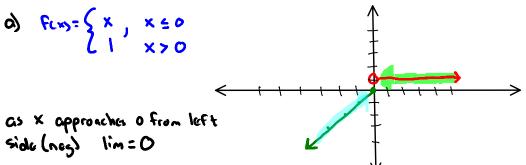
Ex.1 Find the Limit Using a table
a)
$$\lim_{x \to 3} 5x^2 = \frac{x}{f(x)} \frac{2}{20} \frac{2.9}{2.9} \frac{2.91}{2.94} \frac{2.94}{2.945} \frac{3}{3.0001} \frac{3.001}{3.001} \frac{3.0}{5.01} \frac{3.1}{3.5} \frac{3.5}{100} \frac{1}{100} \frac{3.1}{100} \frac{3.5}{100} \frac{1}{100} \frac{3.5}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}$$

b)
$$\lim_{x \to 2} \frac{x^{-1} \cdot y}{x-2}$$
 $\frac{x \left[1.9 + 1.99 + 1.995 \right] 2 \left[2.001 \right] 2.01 \left[2.1 + 1 \right]}{f(x) = \frac{1}{2.2}}$
 $f(x) = \frac{1}{2.2}$
 $f(x) = undefined$
c) $\lim_{x \to 2} \frac{x^{-1} \cdot y}{x^{4} - 2x^{2} + x \cdot 2}$ $\frac{x \left[1.4 + 1.99 + 1.999 + 2 + 1.001 + 1.01 + 1.1 \right]}{x + 2}$
 $f(x) = undefined$
c) $\lim_{x \to 2} \frac{x^{-1} \cdot y}{x^{4} - 2x^{2} + x \cdot 2}$ $\frac{x \left[1.4 + 1.99 + 1.999 + 2 + 1.001 + 2.00 + 2.0$

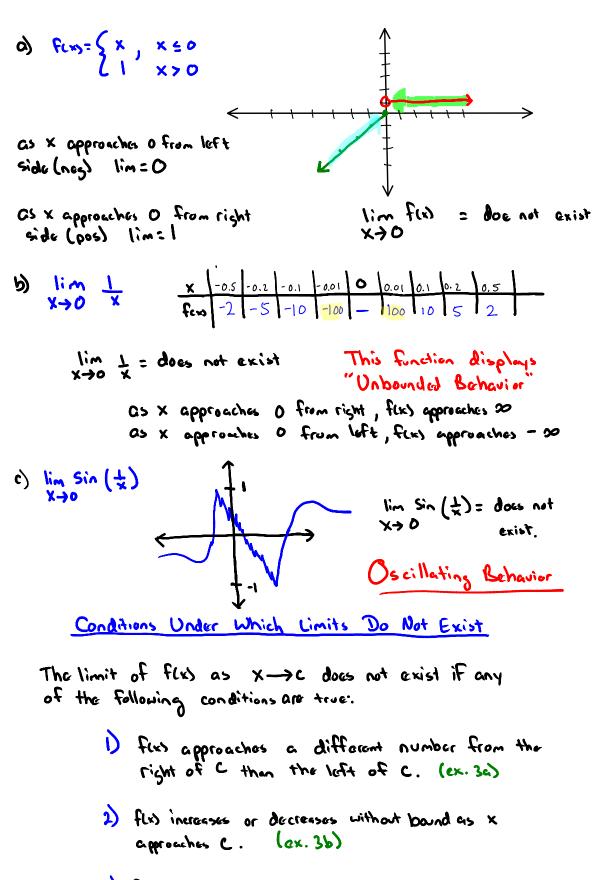
it approaches makes flx's undefined.

* It is important to realize that the existence or nonexistence of f(x) when x= C has no bearing on the existence of the limit of f(x) as x approaches C.





3rd Pd PreCal Hnrs S15 Page 3



3) f(x) oscillates between 2 fixed values as x approaches c (cx.3c)

Properties of Limits

Sometimes the limit of f(x) as $x \rightarrow c$ is just F(c). This is Direct Substitution. lim f(x) = f(c) $x \rightarrow c$

Functions that are like the above statement are called "Well behaved" and its limit can be evaluated by direct substitution of c into FCXS.

 $\lim_{x \to 5} 2x+1 \to f(s) = 2(s)+1 \qquad \lim_{x \to 5} 2x+1 = 11$

 $\frac{\lim_{x \to 0} \frac{\partial x + 1}{x}}{x} \quad \text{not well behaved } !$

 $\begin{array}{cccc} \lim_{x \to c} b = b & \lim_{x \to c} x = c & \lim_{x \to c} y = c & \lim_{x \to c} y = \sqrt{c} \\ \lim_{x \to c} x = x & x \to c & x \to c \\ \lim_{x \to 3} x = 5 & \lim_{x \to 3} x = 3 & \lim_{x \to 4} x^2 = 16 & \lim_{x \to 27} 3\sqrt{27} \\ \lim_{x \to 3} x = 3 & x \to 4 & x \to 27 & = 2 \\ \end{array}$

 $\lim_{X \to C} \sin x = \sin C$ $\lim_{X \to T} \sin x = \sin \pi$

0

Operations with Limits

Let lim fix) = L and lim glx) = K x+c x+c

Scalar Multiplication lim [b f(x)]= bL x > c Scalar Multiplication lim [f(x) ± lim g(x) x > c Scalar Multiplication lim [b f(x)]= bL x > c

Product
lim [fexs gexs] = [lim fexs · lim gess] lim fexs =
$$\lim_{x \to c} \frac{fexs}{x \to c} = \lim_{x \to c} \frac{fexs}{x \to c}$$

1: [[1.]] - [1: 2:]]

 $\lim_{x \to c} [f(x)]^{n} = \lim_{x \to c} f(x)]^{n}$

Ex.Y Find the limit (if it exists) using direct substitution.

a) $\lim_{x \to 2} x^2$	b) lim 5 X->Y	c) lin (x ^L +2x-s) x+4
(2) ² <mark>4</mark>	S	(4) ² +2(4)-5 <mark>19</mark>
$\frac{d}{x \rightarrow y} \frac{x^2 + 2x - 5}{x - 1}$	e) $\lim_{x \to y_2} x$	f) lim cosx x70
<u>(4)²+2(4)-5</u> 4-1 <u>19</u>	12	Cos D
97 lim (-4x3) x+2	h) lim J5x2 X+0	+3 ;) lim (Sx ² -x+3) ^{4/s}
(-4 (2) ³)	5(0)+	(5(-3) ³ - (-3) ^{4/3}
-32	J8 252	J