* A fundamental concept of calculus is limits.

Defn. of a Limit

If f(x) becomes arbitrarily close to an unique number N as x approaches a from either side.

As x gets close to C, but remains unequal to C, the corresponding value of flx1 gets closer to N.

ex:
$$f(x) = \frac{x^2-1}{x^2-1}$$
 let $x=1$

So instead of x=1, use "as x approaches 1".

As x gets closer to 1, fix) gets closer to 2.

B/c we cannot use X=1 (its undefined) but it appears that f(x) is going to be 2.

$$\lim_{x \to 1} f(x) = 2$$
 or $\lim_{x \to 1} \frac{x^2-1}{x-1} = 2$

Ex.1 Find the Limit Using a table

a)
$$\lim_{x \to 3} 5x^2$$
 $\frac{x}{100}$ $\frac{2.95}{100}$ $\frac{2.99}{100}$ $\frac{2.99}{100}$ $\frac{3}{100}$ $\frac{3.001}{100}$ $\frac{3$

b)
$$\lim_{x \to 2} \frac{x-1}{x^2-1}$$

b)
$$\lim_{x\to 2} \frac{x^2-y}{x-2}$$
 $\frac{x}{1.9} \frac{1.99}{1.999} \frac{1.999}{2} \frac{2.001}{2.01} \frac{2.01}{2.01} \frac{2.01}{4.01} \frac{2.$

$$f(1) = \frac{(2)^2-4}{2-2}$$

c)
$$\lim_{x\to 2} \frac{x^3-2x^2+4x-3}{x^4-2x^3+x-2}$$

X	1.9	1,99	1.999	1.9999	2	Q.000l	2.00 \	2.01	2.1
tin		4	.8876	. 8889	-	.8888	.8882	.8815	.8196

Finding limits of graphs that are continuous (above examples) is easier than noncontinuous graphs

x=0 is undefined

$$\lim_{x\to 0} f(x) = 2$$

e) lim Sinx

x	-0.7	-0.2	-0.1	- 0.01	-0.001	0	١٥٥.	٠٥١	. 1	.2
_	.9851				9999999	-			.9983	

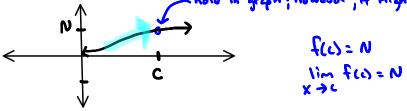
lim Sin X = 1

Some functions can have a limit over though the number that it approaches makes flx) undefined.

* It is important to realize that the existence or nonexistence of flx) when x= c has no bearing on the existence of the limit of fixs as x approaches c.

You can use graphs to determine limits!

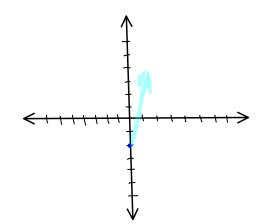
thole in graph; however, it might not have a hole!



Ex. 2 Find the limit of fles as x approaches 2 where

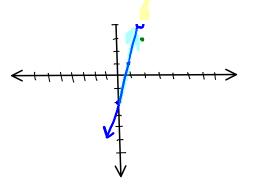
a)
$$f(x) = \begin{cases} 3x-2, & x \neq 2 \\ 3, & x = 2 \end{cases}$$

lim f(x)=4 $x \rightarrow \mathcal{I}$

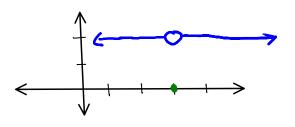


12 Cr. 2 () V+2

$$\lim_{x\to 2} f(x) = 4$$



$$\lim_{X\to 2} f(x) = 2$$



lim foo lim foo x+# x+#+

from left from right

Limits that Fail to Exist

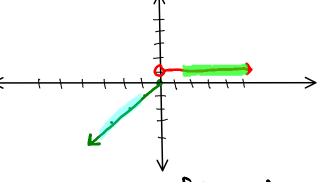
Sometimes there is no single # that the value of "f" approaches as x approaches C. If this occurs, f has no limit as x approaches C.

lim f(x) = does not exist

Ex.3 Find the limit if it exists.

a) Fin= { x , x < 0 } 1 x > 0

oaches o from left side (neg) lim = 0



Cs x approaches O from right side (pos) lim: 1

lim f(x) = doe not exist x+0

b) $\lim_{x\to 0} \frac{1}{x}$

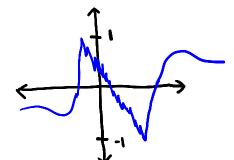
×	-0.5	-0.2	- 0.1	- 0.01	0	0.01	0.1	0. 2	0,5	
fem	-2	-5	-10	-100	_	100	10	5	2	

lim L = does not exist

This function displays "Unbounded Bohavior"

as x approaches 0 from right, flx) approaches = 00 x approaches 0 from left, flx) approaches = 00

c) lim sin (\frac{1}{x})



 $\lim_{x\to 0} \sin\left(\frac{1}{x}\right) = \cos n t$ $\exp t$

Oscillating Behavior

Conditions Under Which Limits Do Not Exist

The limit of flx) as X-> c does not exist if any of the following conditions is true:

- 1) fixt approaches a different number from the right of C than the left of C. (ex. 3a)
- 2) flx) increases or decreases without bound as x approaches C. (ex. 36)
- 3) f(x) oscillates between 2 fixed values as x approaches c (ex.3c)