$$
A=P\left(1+\frac{r}{n}\right)^{n \cdot t} \quad A=P e^{r \cdot t} \quad A=a(1+r)^{t} \quad A=a(1-r)^{t}
$$

Solve each application of exponential equations. Round your answers to the appropriate decimal. Do all work on a separate sheet of paper. Must show work to receive credit!!
\(\left.\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { 1) Gina deposited } \$ 1500 \text { in an account that pays } \\
\text { 4\% interest compounded quarterly. What will the } \\
\text { balance be in two years? }\end{array} & \begin{array}{l}\text { 2) Sarita deposits } \$ 1000 \text { in an account that pays } \\
3.4 \% \text { annual interest compounded continuously. } \\
\text { a.) What is the balance in the account after five } \\
\text { years? }\end{array} \\
\hline\end{array}
$$ $$
\begin{array}{l}\text { b.) How long will it take the balance in Sarita's } \\
\text { account to reach } \$ 2000 \text { ? }\end{array}
$$\right\} $$
\begin{array}{l}\text { 3) The Garcias have } \$ 12000 \text { to invest in a savings } \\
\text { account. What monthly interest rate will they need } \\
\text { to find in order to have } \$ 20000 \text { balance after } 8 \\
\text { years? }\end{array}
$$ \begin{array}{l}4) David's bank pays 2.8 \% annual interest \\
compounded continuously on a savings account. \\
He placed \$ 2000 in the account. \\
a.) How long will it take his initial deposit to \\

double in value?\end{array}\right\}\)| b.) What will the balance be after 5 years? |
| :--- |

